

Green Stormwater Retrofits: How to identify and prioritize retrofit projects, and then act on them.

Cecilia Lane Stormwater Coordinator Chesapeake Stormwater Network <u>watershedgal@hotmail.com</u>

# Who we are...



Nonprofit organized to align the local, state, federal and private sectors to solve the Bay stormwater problem through an independent network of concerned stormwater professionals...

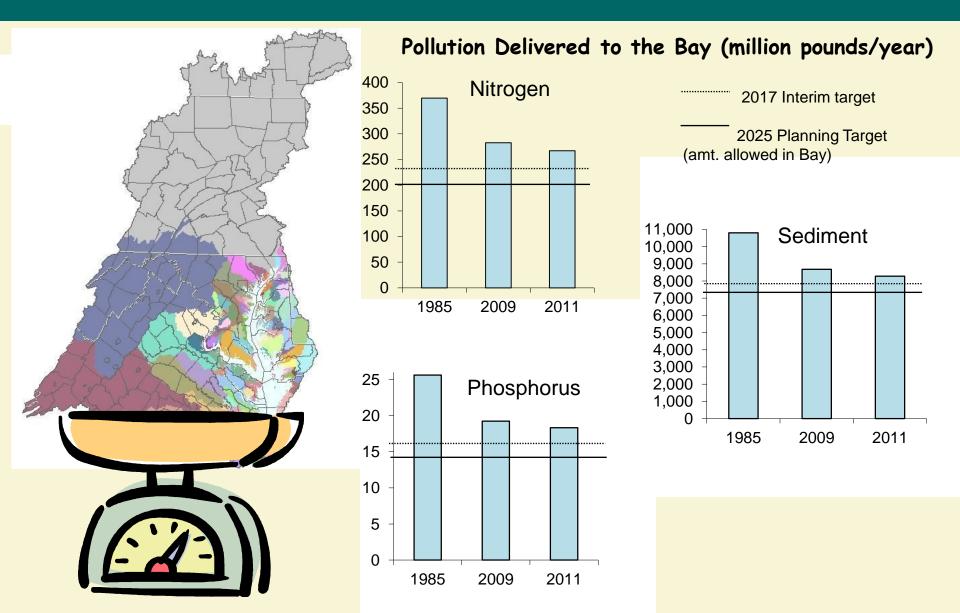
- Chesapeake Bay Stormwater Training Partnership
- Network of Stormwater Professionals
- Chesapeake Bay Program







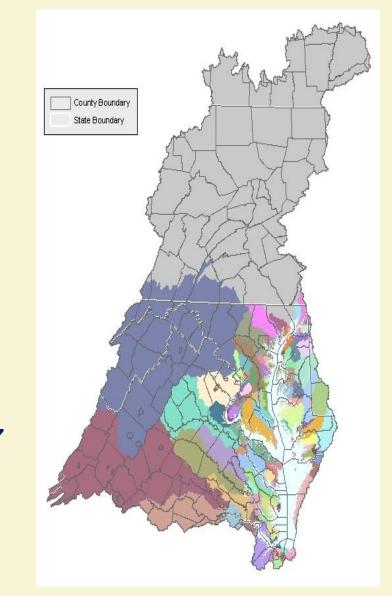
A Watershed Partnership


www.chesapeakestormwater.net

# Background on the Bay



- 64,000 mi<sup>2</sup> across 7 jurisdictions
- 2009 Executive Order to "Clean up the Bay"
- Total Maximum Daily Load
   ≈ "Pollution Diet" for
   Chesapeake Bay
  - Total Nitrogen (TN)
  - Total Phosphorus (TP)
  - Total Suspended Solids (TSS)


#### Chesapeake Bay TMDL: Pollution Diet for All Sectors and Sources



## Chesapeake Bay TMDL Based on 7 Watershed Implementation Plans

#### Jurisdictions required to develop watershed implementation plans (WIPs) to:

- Estimate nutrient and sediment loads
- Identify point and non-point reductions
- Commit to actions, programs, policies
- Two-year milestones provide short-term objectives
- Practices are in place by 2017 to reduce the load by 60%
- All practices in place by 2025



#### Phase II WIP Commitments: Load Reductions from 2009 to 2025

|               | % Reduction in<br>Statewide Loads |      | % Reduction in<br>Urban Loads |     |     | % Total Load Reductions<br>Attributable to Urban Sector |     |      |      |
|---------------|-----------------------------------|------|-------------------------------|-----|-----|---------------------------------------------------------|-----|------|------|
|               | N                                 | Р    | TSS                           | N   | Р   | TSS                                                     | N   | Р    | TSS  |
| Delaware      | 26%                               | 31%  | 27%                           | 13% | 12% | 5%                                                      | 4%  | 2%   | 5%   |
| D.C.          | 19%                               | -68% | 5%                            | 13% | 22% | 16%                                                     | 5%  | N.A. | 255% |
| Maryland      | 21%                               | 20%  | 16%                           | 24% | 28% | 29%                                                     | 21% | 30%  | 66%  |
| New York      | 13%                               | 30%  | 25%                           | 8%  | 20% | 10%                                                     | 7%  | 9%   | 12%  |
| Pennsylvania  | 30%                               | 29%  | 28%                           | 41% | 45% | 50%                                                     | 20% | 24%  | 39%  |
| Virginia      | 18%                               | 25%  | 24%                           | 13% | 21% | 30%                                                     | 10% | 14%  | 23%  |
| West Virginia | 8%                                | 31%  | 32%                           | 3%  | 44% | 50%                                                     | 6%  | 18%  | 37%  |

Negative values indicate increases in loads from 2009 to Phase II WIP planning targets, typically due to increases in wastewater treatment flow up to design capacity.

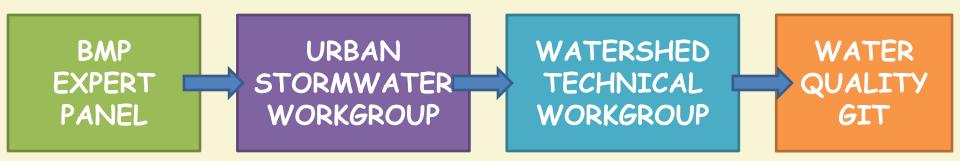
# ~25 to 30% TP and TN load reductions needed from existing development

# How?!



## Nutrient Reduction Strategies

#### **Expert** Panel?


- 1. Comply with new standards
- 2. Redevelopment Credits
- 3. Watershed Reforestation
- 4. Street Cleaning
- 5. Illicit Discharge Removal
- 6. P Bans and N Fertilizer Mgmt 🗸
- 7. Stream Restoration
- 8. BMP Maintenance Upgrades
- 9. Retrofits



# **BMP Review Process**



- Outlined in the WQGIT BMP Review Protocol (WQGIT, 2010)
- Extensive review of current research
- Identify areas of consensus
- Develop a set of recommendations
- Recommendations used to derive methods and/or protocols to derive nutrient/sediment removal rates

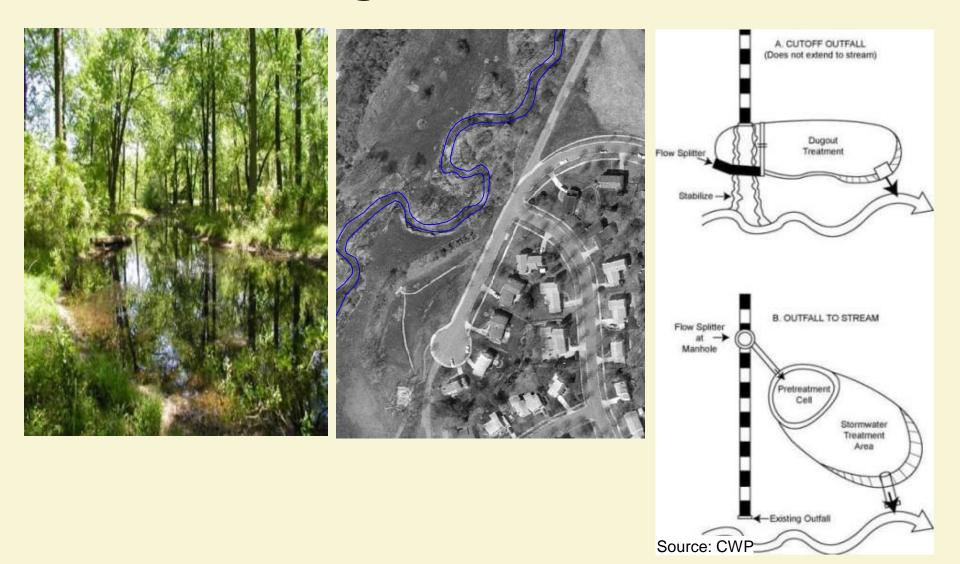


# Key panel outcomes

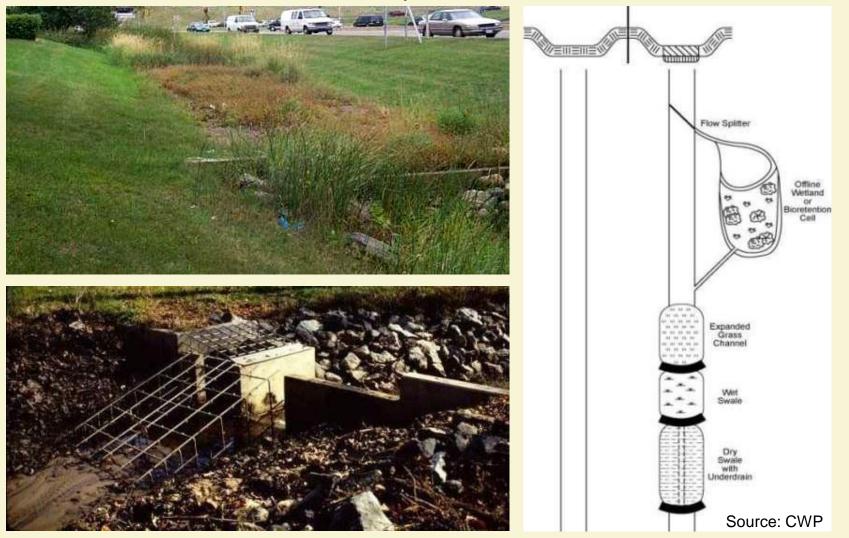
- More retrofit options = more opportunities to get credit!
- Simple to use method for determining pollutant removal!
- Reporting and verification procedures are flexible and can be adapted to align with existing state reporting requirements.
- Not a "one size fits all" approach: Each retrofit has its own unique removal rate based on the amount of runoff it treats and the degree of runoff reduction it provides

# Retrofit Categories

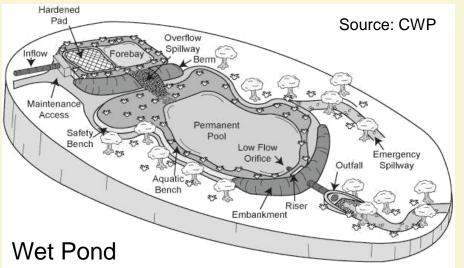
## A. New Retrofit Facilities

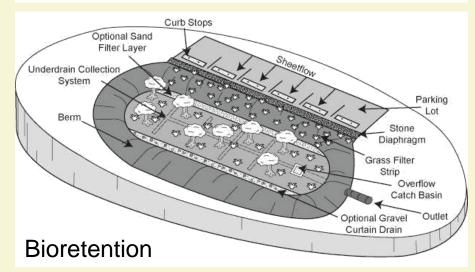

- 1. Near Existing Stormwater Outfalls
- 2. Within the Conveyance System
- 3. Adjacent to Large Parking Lots
- 4. Green street retrofits
- 5. On-site LID retrofits

# B. Existing BMP Facilities


- 1. BMP Conversions
- 2. BMP Enhancements
- 3. BMP Restoration

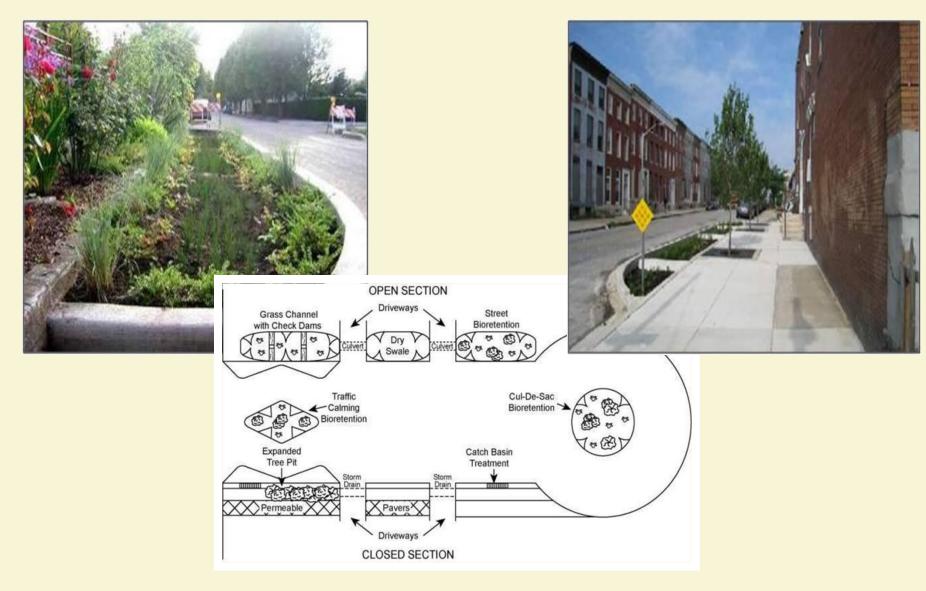



### NEW RETROFITS Near Existing Stormwater Outfalls




## NEW RETROFITS Within the Existing Conveyance System




### NEW RETROFITS Adjacent to Large Parking Lots







### **NEW RETROFITS** Green Street Retrofits



### NEW RETROFITS On-Site LID Retrofits





# **Retrofit Categories**

## B. Existing BMP Facilities

- 1. BMP Conversions
- 2. BMP Enhancements
- 3. BMP Restoration



### EXISTING RETROFITS BMP CONVERSION



#### DRY POND

#### CONSTRUCTED WETLAND

#### BMP CONVERSIONS Rehabilitating Failed Infiltration Practices













#### BMP CONVERSIONS Adding Bioretention/Filtering to Ponds





### EXISTING RETROFITS BMP ENHANCEMENT





#### INCREASE IN HYDRAULIC RETENTION TIME

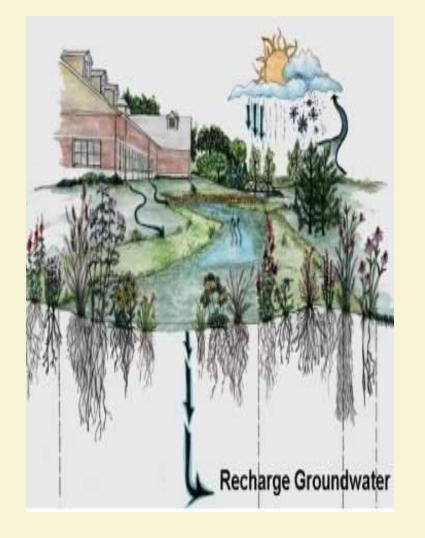
### EXISTING RETROFITS BMP RESTORATION



MAJOR REPAIRS OR UPGRADES TO EXISTING BMPs THAT HAVE FAILED OR LOST ORIGINAL TREATMENT CAPACITY BMP RESTORATION
- Qualifying Conditions Only 4 types of restoration allowed:
a) Major Sediment Cleanouts

- Removal of sediment, debris equal to or grater than 1/10 of the volume of the facility
- b) Vegetative Harvesting
  - Removal of excessive growth with off-site sequestration
- c) Filter Media Enhancements
  - Removal and sequestration of contaminated material and replacement with superior media
- d) Complete BMP Rehab
  - Only applies to older BMPs not previously reported

# BMP RESTORATION


## CAVEATS

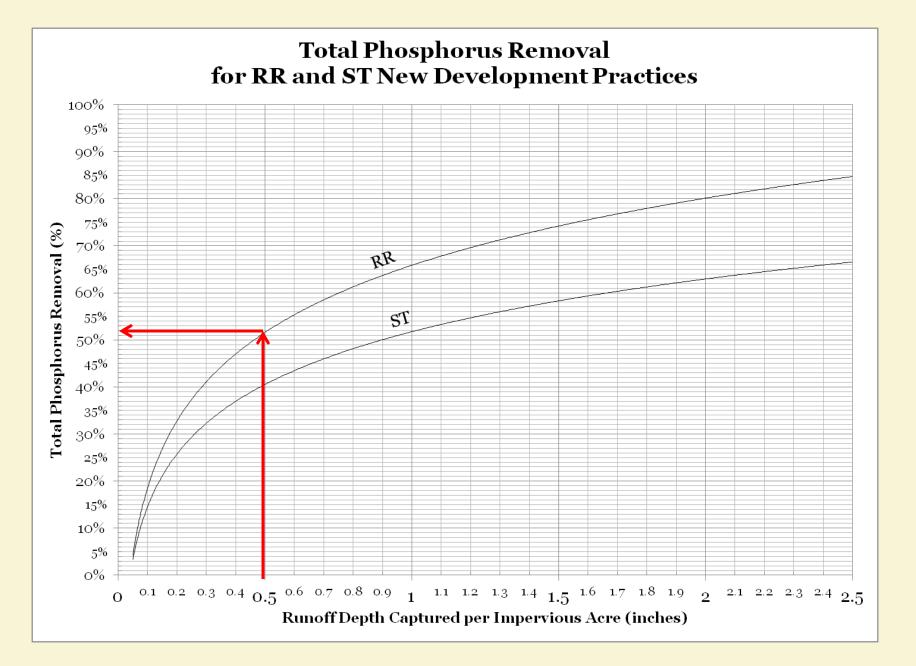
- No credit given for routine maintenance
- Restoration activities must restore original capacity of the BMP <u>at a</u> <u>minimum</u>

# **Removal Rates**

BMP removal rates are a function of runoff depth captured and the amount of stormwater treatment (ST) or runoff reduction (RR) achieved by the practice

### **Runoff Reduction**




Runoff reduction is defined as the total volume reduced through canopy interception, soil infiltration, evaporation, rainfall harvesting, engineered infiltration, extended filtration or evapotranspiration All practices sorted into 2 categories: Runoff Reduction (RR) & Stormwater Treatment (ST)

## Classification of BMPs

| Runoff Reduction Practices<br>(RR) | Stormwater Treatment<br>Practices (ST) |
|------------------------------------|----------------------------------------|
| Bioretention                       | Constructed Wetlands                   |
| Dry Swale                          | Filtering Practices                    |
| Infiltration                       | Proprietary Practices                  |
| Permeable Pavement                 | Wet Swale                              |
| Green Roof                         | Wet Ponds                              |

Achieve at least 25% reduction of annual runoff volume

Traditional Practices



#### # 8 Re-tool your stormwater maintenance program

Inspect the performance of your existing BMP inventory

Field Research Indicates about 30% of the BMP Inventory needs a makeover

Significant nutrient reductions are possible through these low cost "BMP makeovers"

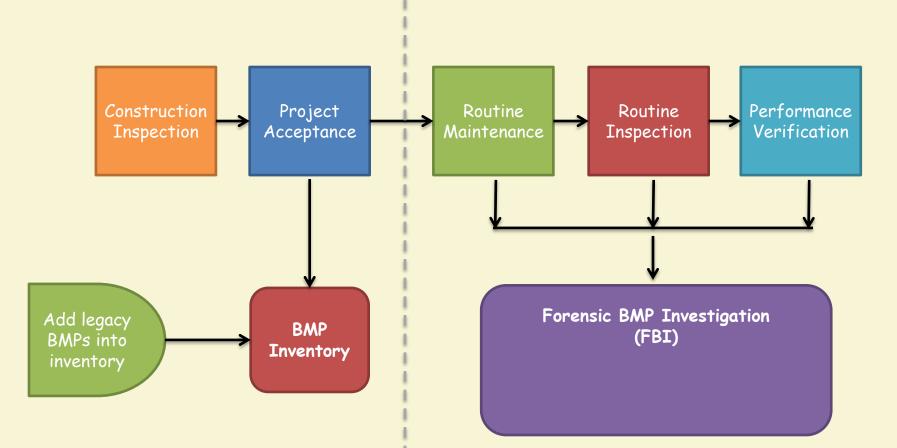
Performance downgrades must be reflected in local WIP **baseline** load

By Retooling existing Maintenance Budget, it is possible to eliminate eyesores and clean the Bay



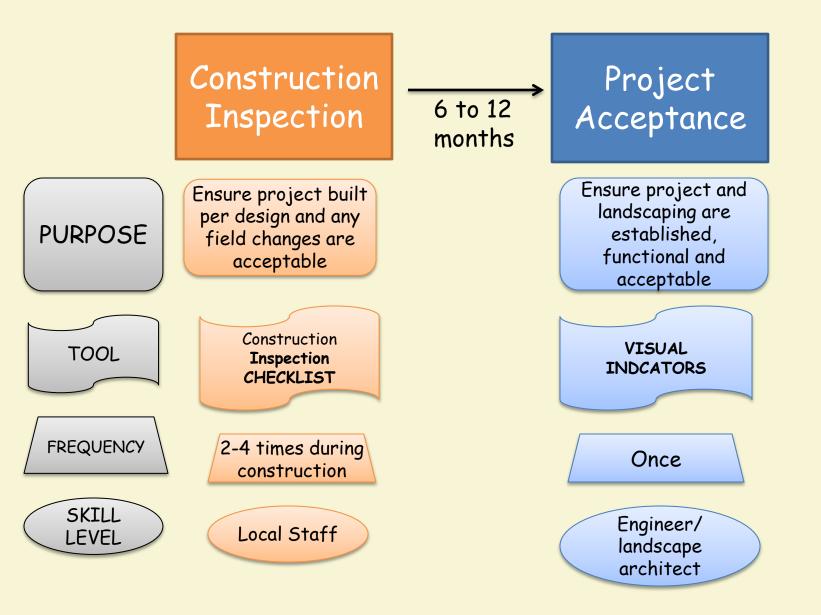


# **BMP** Inspections

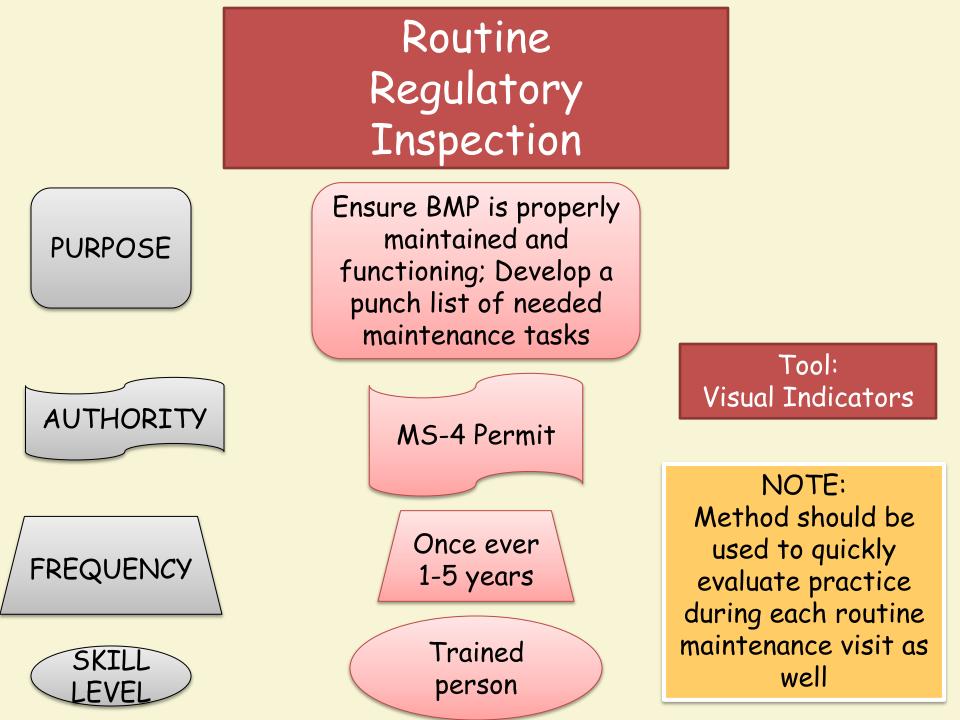

- "Visual Indicators" technique in order to rapidly assess if a BMP is functioning
- Conducted during every other routine inspection under MS4 permits

| FACILITY ID:                                               |                                                             |                    | DATE:             |                                    | Asses              | SED BY:         |                      |
|------------------------------------------------------------|-------------------------------------------------------------|--------------------|-------------------|------------------------------------|--------------------|-----------------|----------------------|
| NAME:ADDRESS:                                              |                                                             |                    | •                 |                                    |                    |                 | HANDBELD/<br>GPS ID: |
| PHOTO IDS:                                                 |                                                             |                    |                   |                                    |                    |                 |                      |
| SECTION 1- BA                                              | OKCEROUN                                                    | D INFORMA          | HON (GIS)         |                                    |                    |                 |                      |
| BMP TYPE :                                                 |                                                             |                    |                   |                                    | YEAR               | CONSTRUCTED:    |                      |
| Dry Detention Pond                                         |                                                             | Dry                |                   | Wetland                            | Owne               | Decision in the |                      |
| Extended Detention                                         | Pond                                                        | Wet                |                   | Level Spreader                     |                    | blic Private    | Unknown              |
| Wet Pond                                                   |                                                             |                    | s Channel         | WQ Inlet                           |                    |                 | _                    |
| Filter (specify:<br>Infiltration (specify                  |                                                             |                    | seable Pavement   | Proprietary Dev     Other          | 100                |                 |                      |
| Check if structure                                         |                                                             |                    |                   | Outer                              |                    |                 |                      |
|                                                            |                                                             |                    | SITE CHARAC       | TERIZATION                         |                    |                 |                      |
| DRAINAGE AREA:                                             | (acres)                                                     |                    |                   | es) Discerned from                 | Plan 0             | County Data     | GIS 🗌 Field          |
| CONTRIBUTING DRAIN                                         |                                                             |                    |                   |                                    |                    | R QUALITY VOL   |                      |
|                                                            |                                                             |                    |                   | Suburban/Res                       | (FROM              | DESIGN PLAN):   | (ft <sup>3</sup> )   |
|                                                            | Institutis<br>Pasture                                       |                    | olf course        | Park                               |                    |                 |                      |
| Crop                                                       |                                                             |                    | ICT.              |                                    |                    |                 |                      |
| SECTION 2- FI                                              |                                                             |                    |                   |                                    |                    |                 |                      |
| Rain in last 48 hrs?                                       | Yes                                                         | No                 | Evidence of h     | igh water table (e.g., er          | cessive soil sa    | turation)?      | Yes No               |
|                                                            |                                                             |                    | DESIGN E          | LEMENTS                            |                    |                 |                      |
| FACILITY SIZE:                                             |                                                             |                    | STORAGE VOL:      | HYDRAULIC                          |                    | DESIGN STORM    |                      |
| Length:(fl)                                                |                                                             | (ft <sup>3</sup> ) |                   | CONFIGURATI                        |                    | Water Quali     |                      |
| Width: (ft)                                                |                                                             |                    | Off-line Facility |                                    | Channel Protection |                 |                      |
| Surface Area:(fl <sup>2</sup> )<br>Depth of WQ storage(fl) |                                                             |                    |                   |                                    |                    |                 | ACCION 1             |
| BMP SIGNAGE: (check                                        |                                                             |                    |                   |                                    |                    |                 |                      |
| None                                                       | Floo                                                        | d Warning          | Stormwater        |                                    | No Trespassin      | s 🗆 Wi          | idlife Habitat       |
| Public Property                                            | Do 1                                                        | Not Mow            | Other             |                                    |                    |                 |                      |
|                                                            |                                                             |                    |                   | ACTERISTICS                        |                    |                 |                      |
| PRIMARY OUTLET<br>STRUCTURE:                               | Large S                                                     | torm By-pass       | Other:            |                                    |                    |                 |                      |
| OUTLET FEATURES:                                           |                                                             |                    |                   | Inverted outlet pipe               |                    |                 | ortex device         |
| o e ne e e e e e e e e e e e e e e e e e                   |                                                             |                    |                   | Micropool outlet                   | Multiple ou        | tlet levels     |                      |
|                                                            |                                                             |                    | ctor? Yes 1       |                                    |                    |                 |                      |
| OUTLET STRUCTURE<br>CONDITIONS:                            | Erosion at 0<br>Outlet Clog                                 |                    |                   | foderate Severe<br>foderate Severe |                    |                 |                      |
| Commons.                                                   |                                                             |                    |                   | Aoderate Severe                    |                    |                 |                      |
| CONDITIONS AT                                              |                                                             |                    |                   |                                    | f ditch 🗖 OO       | a:              |                      |
| OUTFALL:                                                   | Stream Closed storm sewer Surface channel Road ditch Other: |                    |                   |                                    |                    |                 |                      |
| Active Erosion:                                            |                                                             |                    |                   |                                    |                    |                 |                      |
| Trash:                                                     | None                                                        | Slight Moder       | ate Severe        |                                    |                    | Slight Mo       | lerate Sever         |
| Sedimentation:                                             | None                                                        | Slight Moder       | ate Severe        | Other WQ Probler                   | ns: None           | Slight Mo       | lerate Sever         |
|                                                            |                                                             |                    |                   |                                    |                    |                 |                      |
|                                                            |                                                             |                    |                   |                                    |                    |                 |                      |
| Emergency Spillway T                                       |                                                             |                    |                   |                                    |                    |                 |                      |

## Dealing with the Local BMP Legacy


| Thirty Years of BMPs. The BMP Inventory in a Maryland County |        |                          |     |  |  |
|--------------------------------------------------------------|--------|--------------------------|-----|--|--|
| Potentially High Perf                                        | ormers | Known Low Performers     |     |  |  |
| Bioretention/Dry Swales                                      | 49     | Underground<br>Detention | 270 |  |  |
| Sand Filters                                                 | 279    | Dry Ponds                | 528 |  |  |
| Wet pond                                                     | 212    | Oil Grit Separators      | 805 |  |  |
| Pond Wetland                                                 | 98     | Proprietary Practices    | 239 |  |  |
| Infiltration Basin                                           | 58     | Flow Splitter            | 321 |  |  |
| Infiltration Trench                                          | 459    | Other (plunge pools)     | 30  |  |  |
| Adapted from MCDEP 200                                       | 3350   |                          |     |  |  |

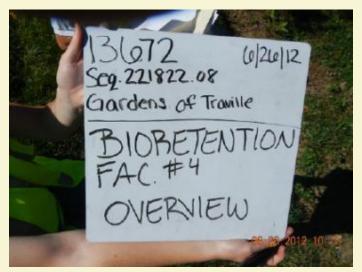
## Visual Inspection Framework




# Visual Indicators

- Goal: To evaluate the bioretention area in 10 minutes or less
- How: Follow a prescribed sequence to assess the performance and functionality of bioretention by using numeric triggers to grade each visual indicator from score of Pass, Minor, Moderate or Severe
- Result: Use of a spreadsheet tool to develop a punch-list of tasks to be completed/to follow-up on in order to bring the BMP up to speed




Local Stormwater Management Review Authority



# Field Investigations

- Take photos, measurements, notes
- Use of a dry erase board and a camera to rapidly document the inspection and note observations on a tablet
- Carry simple tools to inspect facilities from ground surface and perform minor maintenance tasks





## Visual Indicator Approach for Bioretention



## Visual Indicators Sequence

| No. | Zone       | INDICATOR                                   |
|-----|------------|---------------------------------------------|
| 1   | Inlet      | Inlet Obstruction                           |
| 2   | Inlet      | Erosion at Inlet INLET ZONE                 |
| 3   | Inlet      | Pretreatment                                |
| 4   | Inlet      | Structural Integrity, Safety Features       |
| 5   | Perimeter  | Surface Area                                |
| 6   | Perimeter  | Side slope Erosion <b>PERIMETER ZONE</b>    |
| 7   | Perimeter  | Ponding Volume                              |
| 8   | Bed        | Bed Sinking                                 |
| 9   | Bed        | Sediment Caking                             |
| 10  | Bed        | Standing Water                              |
| 11  | Bed        | Ponding Depth BED ZONE                      |
| 12  | Bed        | Mulch Depth/Condition                       |
| 13  | Bed        | Trash                                       |
| 14  | Bed        | Bed Erosion                                 |
| 15  | Vegetation | Vegetative Cover                            |
| 16  | Vegetation | Vegetative Condition VEGETATION ZONE        |
| 17  | Vegetation | Vegetative Maintenance                      |
| 18  | Outlet     | Outlets, Underdrains, Overflows OUTLET ZONE |

## Forensic BMP Investigation FBI

Purpose: to diagnose why a BMP is not working and how to fix it

Audience: BMP owner

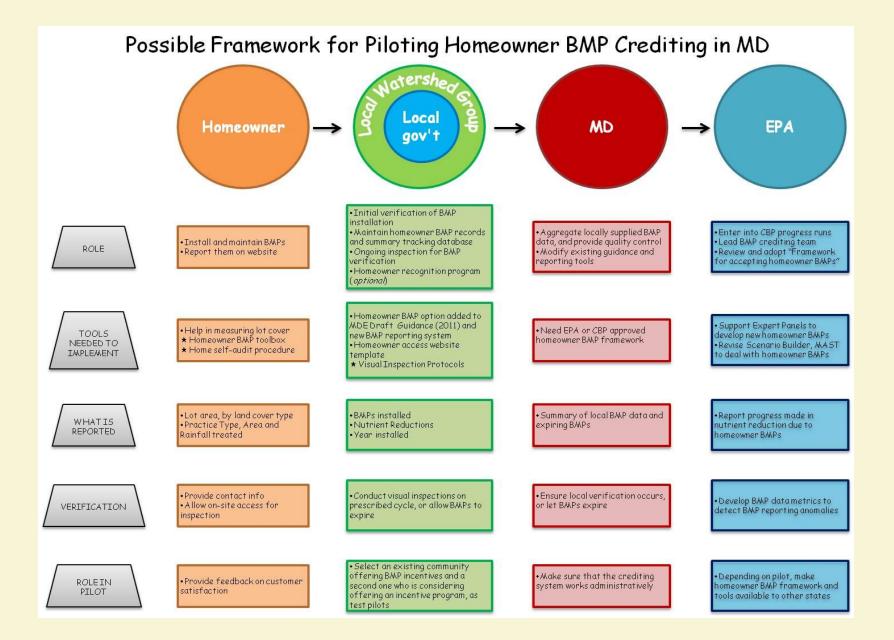
Frequency: as warranted by field inspection

Skill Level: engineer/project estimator

Indicate what needs to be checked by private BMP owner in a letter on non-compliance






| Key Visual Indicators that Trigger an FBI for Bioretention |                                           |                                                                                                                         |  |  |
|------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| No                                                         | Indicator                                 | Status                                                                                                                  |  |  |
| 1                                                          | Severe Inlet<br>Obstruction               | Most runoff cannot enter the facility                                                                                   |  |  |
| 4                                                          | Structural Integrity                      | Facility or adjacent infrastructure at risk of failure                                                                  |  |  |
| 2,<br>6,14                                                 | Severe Inlet Erosion,<br>Sideslope or Bed | A foot or more of gully erosion                                                                                         |  |  |
| 7                                                          | Severe Design<br>Departures               | More than 25% departure from design<br>assumptions for surface area, ponding depth<br>and/or contributing drainage area |  |  |
| 8                                                          | Severe Bed Sinking                        | A foot or more of localized bed sinking and/or sediments observed in underdrain                                         |  |  |
| 9                                                          | Severe Sediment<br>Caking                 | More than two inches of deposition in the facility                                                                      |  |  |
| 10                                                         | Severe Standing<br>Water                  | More than 3 inches of ponding 72 hours after rain                                                                       |  |  |
| 15                                                         | Severe Vegetative<br>Cover                | 35% of less vegetative cover                                                                                            |  |  |

# Homeowner BMP Crediting



|              | UNM Plan for 9200 Bradford Pear Lane: 0.5 acres |                                           |                       |  |
|--------------|-------------------------------------------------|-------------------------------------------|-----------------------|--|
|              | 1                                               | Get Expert Lawn Advice                    | ✓                     |  |
|              | 2                                               | Maintain Dense Cover on Turf              | ✓                     |  |
|              | 3                                               | Choose NOT to fertilize                   | <ul> <li>✓</li> </ul> |  |
|              | 4                                               | Recycle Lawn Clippings and Compost Fallen |                       |  |
|              |                                                 | Leaves                                    |                       |  |
|              | 5                                               | Correct Fertilizer Timing                 | N/A                   |  |
|              | 6                                               | Use Slow Release Fertilizer               | N/A                   |  |
|              | 7                                               | Set Mower Height at 3 inches              | ✓                     |  |
| $\checkmark$ | 8                                               | No off-target fertilization               | N/A                   |  |
|              | 9                                               | Fertilizer free buffer zones around water | 1                     |  |
|              |                                                 | features                                  |                       |  |
|              | 10                                              | Increase soil porosity and infiltration   | <ul> <li>✓</li> </ul> |  |
|              |                                                 |                                           |                       |  |

Urban Nutrient Mgmt Rain gardens Rainwater Harvesting Downspout Disconnection Tree Planting Conservation Landscaping Permeable Driveways



|                   | User input        |                       |          |                |         |
|-------------------|-------------------|-----------------------|----------|----------------|---------|
|                   | Calculated values |                       |          |                |         |
|                   | Constants         |                       |          |                |         |
|                   | Default           |                       |          |                |         |
|                   |                   |                       |          |                |         |
|                   |                   |                       |          |                |         |
|                   |                   |                       |          |                |         |
| NAME              | Tom Schueler      |                       |          |                |         |
| ADDRESS 1         | 1234 Main Street  |                       |          |                |         |
| ADDRESS 2<br>CITY | Catonsville       |                       |          |                |         |
| ZIP               | 21228             |                       |          |                |         |
| 211               | 21220             |                       |          |                |         |
|                   |                   |                       |          |                |         |
|                   |                   |                       |          | LOAD GENERATED |         |
|                   | SITE DATA         |                       |          | FRON           | /I SITE |
|                   |                   |                       |          |                |         |
|                   |                   |                       |          |                |         |
|                   | LOT COVERAGE      | Area: ft <sup>2</sup> | % of Lot | TN Load        | TP Load |
|                   | Impervious Cover  |                       |          |                |         |
|                   |                   |                       |          |                |         |
|                   | Rooftop           | 3360                  | 15%      | 1.18           | 0.13    |
|                   | Driveway/Sidewalk | 2790                  | 13%      | 0.98           | 0.11    |
|                   | Total             | 6150                  | 28%      | 2.16           | 0.24    |
|                   | Pervious Cover    |                       |          |                |         |
|                   | Trees/Landscaping | 5500                  | 25%      | 1.36           | 0.05    |
|                   | Rain Garden/BMP   | 600                   | 3%       | 0.15           |         |
|                   | Lawn              | 9530                  | 44%      | 2.36           | 0.09    |
|                   | Total             | 15630                 | 72%      | 3.88           |         |
|                   |                   |                       |          |                |         |
|                   |                   |                       |          |                |         |
|                   | TOTAL             | 21780                 | 100%     | 6.04           | 0.39    |

Homeowner uploads basic data to local web site

Other tools to manage and aggregate homeowner BMP from local and state databases directly into CBWM

Removal rates are based on expert panel reports

# Next Steps

- Conduct pilots in MD in 2013 to test tools, data management issues and verification capacity (MDE)
- Homeowner BMP guide (Riverwise/CSN)
- Ad hoc crediting team (EPA CBPO)
- Bay-wide rollout to take credit for 2014 progress runs

# Homeowner BMP Delivery Issues


- Expand to non-residential properties
- Link to local BMP incentive/subsidy programs
- Credit BMPs installed to reduce stormwater utility fees
- Training of on-site homeowner BMP evaluators
- Link to other practices inside the home (e.g., energy conservation)

## Updates on other Nutrient Reduction Methods





## Urban Nutrient Management



1.5 million acres of home lawn are fertilized in the watershed

#### CURRENT EXPERT PANEL

## Three UNM Credits

- Automatic State-wide P Reduction Credit for P Ban Legislation
- Contingent State-wide N Reduction Credit based on Sales
- N and P Reductions for Qualifying UNM Plans

### Automatic TP Load Reduction Credit from Pervious Lands for States that HAVE adopted P fertilizer legislation

| Bay                                                                       | TP Reduction     | % Change in   | % Change in |  |  |
|---------------------------------------------------------------------------|------------------|---------------|-------------|--|--|
| State                                                                     | (million pounds) | Pervious Load | Urban Load  |  |  |
| MD 0.060 - <b>25.1 - 8.6</b>                                              |                  |               |             |  |  |
| NУ                                                                        | 0.012            | - 26.5        | - 11.6      |  |  |
| VA 0.125 - 26.7 - 10.2                                                    |                  |               |             |  |  |
| <sup>1</sup> 2010 Delivered Loads                                         |                  |               |             |  |  |
| Source: Gary Shenk, CBPO, April 10, 2012 spreadsheet of CBWM 5.3.2. model |                  |               |             |  |  |
| runs assuming 0% P application rates                                      |                  |               |             |  |  |

Assumed 70% Reduction in TP fertilizer Inputs to CBWM

# Core UNM Practices for the Chesapeake Bay

- 1. Get *technical assistance* to develop an effective UNM plan for the property
- 2. Maintain a **dense** vegetative cover of turf grass or conservation landscaping
- 3. Choose not to fertilize, OR adopt a reduce rate/monitor approach OR the use the small fertilizer dose approach
- 4. Retain clippings and mulched leaves on the yard and keep them out of streets and storm drains
- 5. Do not apply fertilizer before spring green up or after Halloween\*

## Meaningless Photo to Break up Monotonous Word Slides



# Core UNM Practices for the Chesapeake Bay

- 6. Maximize use of slow release N fertilizer during the active growing season
- 7. Set mower height at 3 inches or taller
- 8. Immediately sweep off any fertilizer that lands on a paved surface
- 9. Do not apply fertilizer within 20 feet of a water feature and manage this zone as a perennial planting, a tall grass buffer or a forested buffer
- 10. Employ lawn practices to increase soil porosity and infiltration capability and use the lawn to treat stormwater runoff.

## High Risk Export Factors

# Pervious areas subject to one or more of the following risk factors:

- Currently over-fertilized beyond state or extension recommendations
- P-saturated soils as determined by a soil P test
- Newly established turf (i.e., less than three years old)
- Steep slopes
- Exposed soil
- High water table
- Over-irrigated lawns
- Soils that are sandy, shallow, compacted or have low water holding capacity
- High use areas (e.g., athletic fields, golf courses)
- Adjacent to stream, river or Bay
- Karst terrain

More specific "operational definitions" provided for each risk factor

### Nitrogen Reduction Credits

### for Qualifying UNM Plans Per Acre of Residential, Commercial, Institutional or Public Land

| Turf Nitrogen<br>Management Category                                                                                                                                                                | Annual Nitrogen<br>Reduction Rate |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| Low Risk Lawns <sup>1</sup>                                                                                                                                                                         | 6 % reduction of pervious load    |  |  |
| Hi Risk Lawns <sup>1</sup>                                                                                                                                                                          | 20% reduction of pervious load    |  |  |
| Blended Rate <sup>2</sup> 9% reduction of pervious load                                                                                                                                             |                                   |  |  |
| <sup>1</sup> regardless of fertilization regime (including non-fertilized lawns<br><sup>2</sup> state-wide credit, assuming 80% of lawn acreage falls into the low category and<br>20% is high risk |                                   |  |  |

### Phosphorus Reduction Credits for Qualifying UNM Plans Per Acre of Residential, Commercial, Institutional or Public Land

| Turf Management Category <sup>1</sup>                                                                                                                                                               | Annual TP Reduction Rate <sup>1</sup> |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| Low Risk Lawns                                                                                                                                                                                      | 3 % reduction of pervious load        |  |  |  |
| Hi Risk Lawns                                                                                                                                                                                       | 10 % reduction of pervious load       |  |  |  |
| Blended Rate                                                                                                                                                                                        | 4.5% reduction of pervious land       |  |  |  |
| <sup>1</sup> regardless of fertilization regime (including non-fertilized lawns<br><sup>2</sup> state-wide credit, assuming 80% of lawn acreage falls into the low category and<br>20% is high risk |                                       |  |  |  |

## **Urban Stream Restoration**



- High nutrient reduction rates for qualifying projects
  Provides both a local benefit and a Bay benefit
- Generally popular with the public
- Cost competitive with pond retrofits

### CURRENT EXPERT PANEL

## Proposed Interim Stream Restoration Rate

|                   | Removal rate per Linear foot of Qualifying<br>Stream Restoration |                 |           |          |
|-------------------|------------------------------------------------------------------|-----------------|-----------|----------|
| The second second | Source                                                           | TN              | TP        | TSS      |
|                   | CBP<br>2005<br>N=1                                               | 0.02 lbs        | 0.0035    | 2.55 lbs |
|                   | CSN<br>2011<br>N=6                                               | 0.20 lbs        | 0.068 lbs | 310 lbs  |
|                   | Expert<br>Panel                                                  | See Next Slides |           |          |
| The second second |                                                                  |                 |           |          |

### Recommendations of the Expert Panel to Define Removal Rates for Individual Stream Restoration Projects



# Four Stream Restoration Protocols

- Protocol 1: Credit for Prevented Sediment During Storm Flow -- This protocol provides an annual mass nutrient and sediment reduction credit for qualifying stream restoration practices that prevent channel or bank erosion that would otherwise be delivered downstream from an actively enlarging or incising urban stream.
- Protocol 4: Credit for Dry Channel Regenerative Stormwater Conveyance (RSC) as Upland Retrofit -- This protocol provides an annual mass nutrient and sediment removal rate for this class of projects using the adjustor rate removal curves developed by the stormwater retrofit expert panel.

# Four Stream Restoration Protocols

- Protocol 2: Credit for Denitrification in the Hyporheic Zone During Base Flow -- This protocol provides an annual mass nitrogen reduction credit for qualifying projects using empirical measurements of denitrification during base flow within a stream's hyporheic zone (stream, riparian and floodplain)
- Protocol 3: Credit for Floodplain Reconnection Volumes During Storm Flow-- This protocol provides an annual mass nutrient reduction credit for qualifying projects that reconnect stream channels to their floodplain over a wide range of storm events.

## Discussion on Prioritization of Retrofits



# Resources

- LOTS of Retrofit Resources on web
- New LID Construction, Maintenance and Inspection Resources:
  - TB# 10 Bioretention Illustrated -Any day now!!
  - Videos in English & Spanish
  - TB# 11 Designing a Local LID Maintenance Program
- Homeowner BMP Crediting System and Tools

### www.chesapeakestormwater.net



